| 1 | #include "mtxclient/crypto/utils.hpp" |
| 2 | |
| 3 | #include <nlohmann/json.hpp> |
| 4 | |
| 5 | #include <openssl/aes.h> |
| 6 | #include <openssl/evp.h> |
| 7 | #include <openssl/hmac.h> |
| 8 | #include <openssl/kdf.h> |
| 9 | #include <openssl/rand.h> |
| 10 | #include <openssl/sha.h> |
| 11 | |
| 12 | #include <olm/pk.h> |
| 13 | |
| 14 | #include <algorithm> |
| 15 | #include <cstdint> |
| 16 | |
| 17 | #include "mtx/log.hpp" |
| 18 | #include "mtxclient/crypto/client.hpp" |
| 19 | |
| 20 | namespace mtx { |
| 21 | namespace crypto { |
| 22 | BinaryBuf |
| 23 | create_buffer(std::size_t nbytes) |
| 24 | { |
| 25 | auto buf = BinaryBuf(nbytes); |
| 26 | RAND_bytes(buf: buf.data(), num: (int)buf.size()); |
| 27 | |
| 28 | return buf; |
| 29 | } |
| 30 | |
| 31 | BinaryBuf |
| 32 | PBKDF2_HMAC_SHA_512(const std::string &pass, |
| 33 | const BinaryBuf &salt, |
| 34 | uint32_t iterations, |
| 35 | uint32_t keylen) |
| 36 | { |
| 37 | BinaryBuf out(keylen); |
| 38 | PKCS5_PBKDF2_HMAC(pass: &pass[0], |
| 39 | passlen: (int)pass.size(), |
| 40 | salt: salt.data(), |
| 41 | saltlen: (int)salt.size(), |
| 42 | iter: (int)iterations, |
| 43 | digest: EVP_sha512(), |
| 44 | keylen: (int)keylen, |
| 45 | out: out.data()); |
| 46 | |
| 47 | return out; |
| 48 | } |
| 49 | |
| 50 | std::optional<BinaryBuf> |
| 51 | key_from_passphrase(const std::string &password, |
| 52 | const mtx::secret_storage::AesHmacSha2KeyDescription ¶meters) |
| 53 | { |
| 54 | if (!parameters.passphrase) |
| 55 | throw std::invalid_argument("no passphrase to derive key from" ); |
| 56 | if (parameters.passphrase->algorithm != "m.pbkdf2" ) |
| 57 | throw std::invalid_argument("invalid pbkdf algorithm" ); |
| 58 | auto decryptionKey = PBKDF2_HMAC_SHA_512(pass: password, |
| 59 | salt: to_binary_buf(str: parameters.passphrase->salt), |
| 60 | iterations: parameters.passphrase->iterations, |
| 61 | keylen: parameters.passphrase->bits / 8); |
| 62 | |
| 63 | // verify key |
| 64 | using namespace mtx::crypto; |
| 65 | auto testKeys = HKDF_SHA256(key: decryptionKey, salt: BinaryBuf(32, 0), info: BinaryBuf{}); |
| 66 | |
| 67 | auto encrypted = AES_CTR_256_Encrypt( |
| 68 | plaintext: std::string(32, '\0'), aes256Key: testKeys.aes, iv: to_binary_buf(str: base642bin(b64: parameters.iv))); |
| 69 | |
| 70 | auto mac = HMAC_SHA256(hmacKey: testKeys.mac, data: encrypted); |
| 71 | if (mac != to_binary_buf(str: base642bin(b64: parameters.mac))) { |
| 72 | mtx::utils::log::log()->debug( |
| 73 | fmt: "mac mismatch: {} != {}" , args: bin2base64(bin: to_string(buf: mac)), args: parameters.mac); |
| 74 | return std::nullopt; |
| 75 | } |
| 76 | |
| 77 | return decryptionKey; |
| 78 | } |
| 79 | |
| 80 | std::optional<BinaryBuf> |
| 81 | key_from_recoverykey(const std::string &recoverykey, |
| 82 | const mtx::secret_storage::AesHmacSha2KeyDescription ¶meters) |
| 83 | { |
| 84 | auto tempKey = to_binary_buf(str: base582bin(bin: recoverykey)); |
| 85 | |
| 86 | if (tempKey.size() < 3 || tempKey[0] != 0x8b || tempKey[1] != 0x01) |
| 87 | return std::nullopt; |
| 88 | |
| 89 | uint8_t parity = 0; |
| 90 | for (auto byte = tempKey.begin(); byte != tempKey.end() - 1; ++byte) |
| 91 | parity ^= *byte; |
| 92 | |
| 93 | if (parity != tempKey.back()) |
| 94 | return std::nullopt; |
| 95 | |
| 96 | auto decryptionKey = BinaryBuf(tempKey.begin() + 2, tempKey.end() - 1); |
| 97 | |
| 98 | // verify key |
| 99 | using namespace mtx::crypto; |
| 100 | auto testKeys = HKDF_SHA256(key: decryptionKey, salt: BinaryBuf(32, 0), info: BinaryBuf{}); |
| 101 | |
| 102 | auto encrypted = AES_CTR_256_Encrypt( |
| 103 | plaintext: std::string(32, '\0'), aes256Key: testKeys.aes, iv: to_binary_buf(str: base642bin(b64: parameters.iv))); |
| 104 | |
| 105 | auto mac = HMAC_SHA256(hmacKey: testKeys.mac, data: encrypted); |
| 106 | if (mac != to_binary_buf(str: base642bin(b64: parameters.mac))) { |
| 107 | mtx::utils::log::log()->debug( |
| 108 | fmt: "mac mismatch: {} != {}" , args: bin2base64(bin: to_string(buf: mac)), args: parameters.mac); |
| 109 | return std::nullopt; |
| 110 | } |
| 111 | |
| 112 | return decryptionKey; |
| 113 | } |
| 114 | |
| 115 | std::string |
| 116 | key_to_recoverykey(const BinaryBuf &key) |
| 117 | { |
| 118 | auto buf = BinaryBuf(key.size() + 3); |
| 119 | buf[0] = 0x8b; |
| 120 | buf[1] = 0x01; |
| 121 | std::copy(first: begin(cont: key), last: end(cont: key), result: begin(cont&: buf) + 2); |
| 122 | |
| 123 | uint8_t parity = buf[0] ^ buf[1]; |
| 124 | for (uint8_t b : key) |
| 125 | parity ^= b; |
| 126 | buf.back() = parity; |
| 127 | |
| 128 | return bin2base58(bin: to_string(buf)); |
| 129 | } |
| 130 | |
| 131 | std::string |
| 132 | decrypt(const mtx::secret_storage::AesHmacSha2EncryptedData &data, |
| 133 | const BinaryBuf &decryptionKey, |
| 134 | const std::string &key_name) |
| 135 | { |
| 136 | auto keys = HKDF_SHA256(key: decryptionKey, salt: BinaryBuf(32, 0), info: to_binary_buf(str: key_name)); |
| 137 | auto keyMac = HMAC_SHA256(hmacKey: keys.mac, data: to_binary_buf(str: base642bin(b64: data.ciphertext))); |
| 138 | |
| 139 | if (keyMac != to_binary_buf(str: base642bin(b64: data.mac))) { |
| 140 | mtx::utils::log::log()->debug( |
| 141 | fmt: "mac mismatch: {} != {}" , args: bin2base64(bin: to_string(buf: keyMac)), args: data.mac); |
| 142 | return "" ; |
| 143 | } |
| 144 | |
| 145 | auto decryptedSecret = AES_CTR_256_Decrypt( |
| 146 | ciphertext: base642bin(b64: data.ciphertext), aes256Key: keys.aes, iv: to_binary_buf(str: base642bin(b64: data.iv))); |
| 147 | |
| 148 | return to_string(buf: decryptedSecret); |
| 149 | } |
| 150 | |
| 151 | mtx::secret_storage::AesHmacSha2EncryptedData |
| 152 | encrypt(const std::string &data, const BinaryBuf &decryptionKey, const std::string &key_name) |
| 153 | { |
| 154 | mtx::secret_storage::AesHmacSha2EncryptedData encrypted{}; |
| 155 | auto iv = compatible_iv(incompatible_iv: create_buffer(nbytes: 16)); |
| 156 | encrypted.iv = bin2base64(bin: to_string(buf: iv)); |
| 157 | |
| 158 | auto keys = HKDF_SHA256(key: decryptionKey, salt: BinaryBuf(32, 0), info: to_binary_buf(str: key_name)); |
| 159 | |
| 160 | auto ciphertext = AES_CTR_256_Encrypt(plaintext: data, aes256Key: keys.aes, iv); |
| 161 | encrypted.ciphertext = bin2base64(bin: to_string(buf: ciphertext)); |
| 162 | encrypted.mac = bin2base64(bin: to_string(buf: HMAC_SHA256(hmacKey: keys.mac, data: ciphertext))); |
| 163 | |
| 164 | return encrypted; |
| 165 | } |
| 166 | |
| 167 | HkdfKeys |
| 168 | HKDF_SHA256(const BinaryBuf &key, const BinaryBuf &salt, const BinaryBuf &info) |
| 169 | { |
| 170 | BinaryBuf buf(64); |
| 171 | EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, e: nullptr); |
| 172 | |
| 173 | if (EVP_PKEY_derive_init(ctx: pctx) <= 0) { |
| 174 | EVP_PKEY_CTX_free(ctx: pctx); |
| 175 | throw std::runtime_error("HKDF: failed derive init" ); |
| 176 | } |
| 177 | if (EVP_PKEY_CTX_set_hkdf_md(ctx: pctx, md: EVP_sha256()) <= 0) { |
| 178 | EVP_PKEY_CTX_free(ctx: pctx); |
| 179 | throw std::runtime_error("HKDF: failed to set digest" ); |
| 180 | } |
| 181 | if (EVP_PKEY_CTX_set1_hkdf_salt(ctx: pctx, salt: salt.data(), saltlen: (int)salt.size()) <= 0) { |
| 182 | EVP_PKEY_CTX_free(ctx: pctx); |
| 183 | throw std::runtime_error("HKDF: failed to set salt" ); |
| 184 | } |
| 185 | if (EVP_PKEY_CTX_set1_hkdf_key(ctx: pctx, key: key.data(), keylen: (int)key.size()) <= 0) { |
| 186 | EVP_PKEY_CTX_free(ctx: pctx); |
| 187 | throw std::runtime_error("HKDF: failed to set key" ); |
| 188 | } |
| 189 | if (EVP_PKEY_CTX_add1_hkdf_info(ctx: pctx, info: info.data(), infolen: (int)info.size()) <= 0) { |
| 190 | EVP_PKEY_CTX_free(ctx: pctx); |
| 191 | throw std::runtime_error("HKDF: failed to set info" ); |
| 192 | } |
| 193 | |
| 194 | std::size_t outlen = buf.size(); |
| 195 | if (EVP_PKEY_derive(ctx: pctx, key: buf.data(), keylen: &outlen) <= 0) { |
| 196 | EVP_PKEY_CTX_free(ctx: pctx); |
| 197 | throw std::runtime_error("HKDF: failed derive" ); |
| 198 | } |
| 199 | |
| 200 | EVP_PKEY_CTX_free(ctx: pctx); |
| 201 | |
| 202 | if (outlen != 64) |
| 203 | throw std::runtime_error("Invalid HKDF size!" ); |
| 204 | |
| 205 | BinaryBuf macKey(buf.begin() + 32, buf.end()); |
| 206 | buf.resize(new_size: 32); |
| 207 | |
| 208 | return {.aes: std::move(buf), .mac: std::move(macKey)}; |
| 209 | } |
| 210 | |
| 211 | BinaryBuf |
| 212 | compatible_iv(BinaryBuf incompatible_iv) |
| 213 | { |
| 214 | // need to set bit 63 to 0 |
| 215 | // Element and everyone else seems to be counting bytes from the back, i.e. iv_data[15] is |
| 216 | // the last byte. So we need to clear byte 15 - 63%8 = 15 - 7 = 8, the highest bit, 1 << 7 |
| 217 | // see: |
| 218 | // https://github.com/matrix-org/matrix-js-sdk/blob/529fe93ab14b93c515e9ab0d0277c1942a5d73c5/src/crypto/aes.ts#L144 |
| 219 | uint8_t *data = incompatible_iv.data(); |
| 220 | constexpr std::uint8_t mask = static_cast<std::uint8_t>(~(1U << (63 / 8))); |
| 221 | data[15 - 63 % 8] &= mask; |
| 222 | return incompatible_iv; |
| 223 | } |
| 224 | |
| 225 | BinaryBuf |
| 226 | AES_CTR_256_Encrypt(const std::string &plaintext, const BinaryBuf &aes256Key, BinaryBuf iv) |
| 227 | { |
| 228 | EVP_CIPHER_CTX *ctx; |
| 229 | |
| 230 | int len; |
| 231 | |
| 232 | int ciphertext_len; |
| 233 | |
| 234 | // The ciphertext expand up to block size, which is 128 for AES256 |
| 235 | BinaryBuf encrypted = compatible_iv(incompatible_iv: create_buffer(nbytes: plaintext.size() + AES_BLOCK_SIZE)); |
| 236 | |
| 237 | /* Create and initialise the context */ |
| 238 | if (ctx = EVP_CIPHER_CTX_new(); !ctx) { |
| 239 | // handleErrors(); |
| 240 | } |
| 241 | |
| 242 | if (1 != EVP_EncryptInit_ex(ctx, cipher: EVP_aes_256_ctr(), impl: nullptr, key: aes256Key.data(), iv: iv.data())) { |
| 243 | // handleErrors(); |
| 244 | } |
| 245 | |
| 246 | /* Provide the message to be encrypted, and obtain the encrypted output. |
| 247 | * EVP_EncryptUpdate can be called multiple times if necessary |
| 248 | */ |
| 249 | if (1 != EVP_EncryptUpdate(ctx, |
| 250 | out: encrypted.data(), |
| 251 | outl: &len, |
| 252 | in: reinterpret_cast<const unsigned char *>(&plaintext.c_str()[0]), |
| 253 | inl: (int)plaintext.size())) { |
| 254 | // handleErrors(); |
| 255 | } |
| 256 | ciphertext_len = len; |
| 257 | |
| 258 | /* Finalise the encryption. Further ciphertext bytes may be written at |
| 259 | * this stage. |
| 260 | */ |
| 261 | if (1 != EVP_EncryptFinal_ex(ctx, out: encrypted.data() + len, outl: &len)) { |
| 262 | // handleErrors(); |
| 263 | } |
| 264 | |
| 265 | ciphertext_len += len; |
| 266 | encrypted.resize(new_size: ciphertext_len); |
| 267 | |
| 268 | /* Clean up */ |
| 269 | EVP_CIPHER_CTX_free(c: ctx); |
| 270 | |
| 271 | return encrypted; |
| 272 | } |
| 273 | |
| 274 | BinaryBuf |
| 275 | AES_CTR_256_Decrypt(const std::string &ciphertext, const BinaryBuf &aes256Key, BinaryBuf iv) |
| 276 | { |
| 277 | EVP_CIPHER_CTX *ctx; |
| 278 | |
| 279 | int len; |
| 280 | |
| 281 | int plaintext_len; |
| 282 | |
| 283 | BinaryBuf decrypted = create_buffer(nbytes: ciphertext.size()); |
| 284 | |
| 285 | /* Create and initialise the context */ |
| 286 | if (ctx = EVP_CIPHER_CTX_new(); !ctx) { |
| 287 | // handleErrors(); |
| 288 | } |
| 289 | |
| 290 | /* Initialise the decryption operation. IMPORTANT - ensure you use a key |
| 291 | * and IV size appropriate for your cipher |
| 292 | * In this example we are using 256 bit AES (i.e. a 256 bit key). The |
| 293 | * IV size for *most* modes is the same as the block size. For AES this |
| 294 | * is 128 bits */ |
| 295 | if (1 != EVP_DecryptInit_ex(ctx, cipher: EVP_aes_256_ctr(), impl: nullptr, key: aes256Key.data(), iv: iv.data())) { |
| 296 | // handleErrors(); |
| 297 | } |
| 298 | |
| 299 | /* Provide the message to be decrypted, and obtain the plaintext output. |
| 300 | * EVP_DecryptUpdate can be called multiple times if necessary |
| 301 | */ |
| 302 | if (1 != EVP_DecryptUpdate(ctx, |
| 303 | out: decrypted.data(), |
| 304 | outl: &len, |
| 305 | in: reinterpret_cast<const unsigned char *>(&ciphertext.data()[0]), |
| 306 | inl: (int)ciphertext.size())) { |
| 307 | // handleErrors(); |
| 308 | } |
| 309 | plaintext_len = len; |
| 310 | |
| 311 | /* Finalise the decryption. Further plaintext bytes may be written at |
| 312 | * this stage. |
| 313 | */ |
| 314 | if (1 != EVP_DecryptFinal_ex(ctx, outm: decrypted.data() + len, outl: &len)) { |
| 315 | // handleErrors(); |
| 316 | } |
| 317 | plaintext_len += len; |
| 318 | decrypted.resize(new_size: plaintext_len); |
| 319 | |
| 320 | /* Clean up */ |
| 321 | EVP_CIPHER_CTX_free(c: ctx); |
| 322 | |
| 323 | return decrypted; |
| 324 | } |
| 325 | |
| 326 | std::string |
| 327 | CURVE25519_public_key_from_private(const BinaryBuf &privateKey) |
| 328 | { |
| 329 | auto ctx = create_olm_object<PkDecryptionObject>(); |
| 330 | |
| 331 | BinaryBuf pubkey(::olm_pk_key_length()); |
| 332 | |
| 333 | ::olm_pk_key_from_private( |
| 334 | decryption: ctx.get(), pubkey: pubkey.data(), pubkey_length: pubkey.size(), privkey: privateKey.data(), privkey_length: privateKey.size()); |
| 335 | |
| 336 | return to_string(buf: pubkey); |
| 337 | } |
| 338 | |
| 339 | CURVE25519_AES_SHA2_Encrypted |
| 340 | CURVE25519_AES_SHA2_Encrypt(const std::string &plaintext, const std::string &base64_publicKey) |
| 341 | { |
| 342 | auto ctx = create_olm_object<PkEncryptionObject>(); |
| 343 | |
| 344 | ::olm_pk_encryption_set_recipient_key( |
| 345 | encryption: ctx.get(), public_key: base64_publicKey.data(), public_key_length: base64_publicKey.size()); |
| 346 | |
| 347 | BinaryBuf ephemeral(::olm_pk_key_length()); |
| 348 | BinaryBuf mac(::olm_pk_mac_length(encryption: ctx.get())); |
| 349 | BinaryBuf ciphertext(::olm_pk_ciphertext_length(encryption: ctx.get(), plaintext_length: plaintext.size())); |
| 350 | BinaryBuf randomBuf = create_buffer(nbytes: ::olm_pk_encrypt_random_length(encryption: ctx.get())); |
| 351 | auto encrypted_size = ::olm_pk_encrypt(encryption: ctx.get(), |
| 352 | plaintext: plaintext.data(), |
| 353 | plaintext_length: plaintext.size(), |
| 354 | ciphertext: ciphertext.data(), |
| 355 | ciphertext_length: ciphertext.size(), |
| 356 | mac: mac.data(), |
| 357 | mac_length: mac.size(), |
| 358 | ephemeral_key: ephemeral.data(), |
| 359 | ephemeral_key_size: ephemeral.size(), |
| 360 | random: randomBuf.data(), |
| 361 | random_length: randomBuf.size()); |
| 362 | |
| 363 | if (encrypted_size != olm_error()) { |
| 364 | CURVE25519_AES_SHA2_Encrypted val; |
| 365 | val.ciphertext = to_string(buf: ciphertext); |
| 366 | val.mac = to_string(buf: mac); |
| 367 | val.ephemeral = to_string(buf: ephemeral); |
| 368 | return val; |
| 369 | } else |
| 370 | throw olm_exception(__func__, ctx.get()); |
| 371 | } |
| 372 | |
| 373 | std::string |
| 374 | CURVE25519_AES_SHA2_Decrypt(std::string base64_ciphertext, |
| 375 | const BinaryBuf &privateKey, |
| 376 | const std::string &ephemeral, |
| 377 | const std::string &mac) |
| 378 | { |
| 379 | auto ctx = create_olm_object<PkDecryptionObject>(); |
| 380 | |
| 381 | BinaryBuf pubkey(::olm_pk_key_length()); |
| 382 | |
| 383 | ::olm_pk_key_from_private( |
| 384 | decryption: ctx.get(), pubkey: pubkey.data(), pubkey_length: pubkey.size(), privkey: privateKey.data(), privkey_length: privateKey.size()); |
| 385 | |
| 386 | std::string plaintext(olm_pk_max_plaintext_length(decryption: ctx.get(), ciphertext_length: base64_ciphertext.size()), '\0'); |
| 387 | std::size_t decrypted_size = ::olm_pk_decrypt(decryption: ctx.get(), |
| 388 | ephemeral_key: ephemeral.data(), |
| 389 | ephemeral_key_length: ephemeral.size(), |
| 390 | mac: mac.data(), |
| 391 | mac_length: mac.size(), |
| 392 | ciphertext: base64_ciphertext.data(), |
| 393 | ciphertext_length: base64_ciphertext.size(), |
| 394 | plaintext: plaintext.data(), |
| 395 | max_plaintext_length: plaintext.size()); |
| 396 | |
| 397 | if (decrypted_size != olm_error()) { |
| 398 | plaintext.resize(n: decrypted_size); |
| 399 | return plaintext; |
| 400 | } else |
| 401 | throw olm_exception(__func__, ctx.get()); |
| 402 | } |
| 403 | |
| 404 | mtx::responses::backup::EncryptedSessionData |
| 405 | encrypt_session(const mtx::responses::backup::SessionData &data, const std::string &publicKey) |
| 406 | { |
| 407 | mtx::responses::backup::EncryptedSessionData d; |
| 408 | |
| 409 | auto temp = CURVE25519_AES_SHA2_Encrypt(plaintext: nlohmann::json(data).dump(), base64_publicKey: publicKey); |
| 410 | d.ciphertext = std::move(temp.ciphertext); |
| 411 | d.mac = std::move(temp.mac); |
| 412 | d.ephemeral = std::move(temp.ephemeral); |
| 413 | |
| 414 | return d; |
| 415 | } |
| 416 | |
| 417 | mtx::responses::backup::SessionData |
| 418 | decrypt_session(const mtx::responses::backup::EncryptedSessionData &data, |
| 419 | const BinaryBuf &privateKey) |
| 420 | { |
| 421 | return nlohmann::json::parse( |
| 422 | i: CURVE25519_AES_SHA2_Decrypt(base64_ciphertext: data.ciphertext, privateKey, ephemeral: data.ephemeral, mac: data.mac)) |
| 423 | .get<mtx::responses::backup::SessionData>(); |
| 424 | } |
| 425 | |
| 426 | std::string |
| 427 | sha256(const std::string &data) |
| 428 | { |
| 429 | bool success = false; |
| 430 | std::string hashed; |
| 431 | |
| 432 | #if OPENSSL_VERSION_NUMBER < 0x10100000L |
| 433 | EVP_MD_CTX *context = EVP_MD_CTX_create(); |
| 434 | #else |
| 435 | EVP_MD_CTX *context = EVP_MD_CTX_new(); |
| 436 | #endif |
| 437 | |
| 438 | if (context != nullptr) { |
| 439 | if (EVP_DigestInit_ex(ctx: context, type: EVP_sha256(), impl: nullptr)) { |
| 440 | if (EVP_DigestUpdate(ctx: context, d: data.c_str(), cnt: data.length())) { |
| 441 | unsigned char hash[EVP_MAX_MD_SIZE]; |
| 442 | unsigned int lengthOfHash = 0; |
| 443 | |
| 444 | if (EVP_DigestFinal_ex(ctx: context, md: hash, s: &lengthOfHash)) { |
| 445 | hashed = std::string(hash, hash + lengthOfHash); |
| 446 | success = true; |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | #if OPENSSL_VERSION_NUMBER < 0x10100000L |
| 452 | EVP_MD_CTX_destroy(context); |
| 453 | #else |
| 454 | EVP_MD_CTX_free(ctx: context); |
| 455 | #endif |
| 456 | } |
| 457 | |
| 458 | if (success) |
| 459 | return hashed; |
| 460 | throw std::runtime_error("sha256 failed!" ); |
| 461 | } |
| 462 | |
| 463 | BinaryBuf |
| 464 | decrypt_file(const std::string &ciphertext, const mtx::crypto::EncryptedFile &encryption_info) |
| 465 | { |
| 466 | if (encryption_info.v != "v2" ) |
| 467 | throw std::invalid_argument("Unsupported encrypted file version" ); |
| 468 | |
| 469 | if (encryption_info.key.kty != "oct" ) |
| 470 | throw std::invalid_argument("Unsupported key type" ); |
| 471 | |
| 472 | if (encryption_info.key.alg != "A256CTR" ) |
| 473 | throw std::invalid_argument("Unsupported algorithm" ); |
| 474 | |
| 475 | // Be careful, the key should be urlsafe and unpadded, the iv and sha only need to |
| 476 | // be unpadded |
| 477 | if (bin2base64_unpadded(bin: sha256(data: ciphertext)) != encryption_info.hashes.at(k: "sha256" )) |
| 478 | throw std::invalid_argument( |
| 479 | "sha256 of encrypted file does not match the ciphertext, expected '" + |
| 480 | bin2base64_unpadded(bin: sha256(data: ciphertext)) + "', got '" + |
| 481 | encryption_info.hashes.at(k: "sha256" ) + "'" ); |
| 482 | |
| 483 | return AES_CTR_256_Decrypt(ciphertext, |
| 484 | aes256Key: to_binary_buf(str: base642bin_urlsafe_unpadded(b64: encryption_info.key.k)), |
| 485 | iv: to_binary_buf(str: base642bin_unpadded(b64: encryption_info.iv))); |
| 486 | } |
| 487 | |
| 488 | std::pair<BinaryBuf, mtx::crypto::EncryptedFile> |
| 489 | encrypt_file(const std::string &plaintext) |
| 490 | { |
| 491 | mtx::crypto::EncryptedFile encryption_info; |
| 492 | |
| 493 | // iv has to be 16 bytes, key 32! |
| 494 | BinaryBuf key = create_buffer(nbytes: 32); |
| 495 | BinaryBuf iv = create_buffer(nbytes: 16); |
| 496 | constexpr std::uint8_t mask = static_cast<std::uint8_t>(~(1U << (63 / 8))); |
| 497 | iv[15 - 63 % 8] &= mask; |
| 498 | |
| 499 | // Counter should be 0 in v1.1 of the spec... |
| 500 | for (std::size_t i = 8; i < 16; i++) |
| 501 | iv[i] = 0; |
| 502 | |
| 503 | BinaryBuf cyphertext = AES_CTR_256_Encrypt(plaintext, aes256Key: key, iv); |
| 504 | |
| 505 | // Be careful, the key should be urlsafe and unpadded, the iv and sha only need to |
| 506 | // be unpadded |
| 507 | JWK web_key; |
| 508 | web_key.ext = true; |
| 509 | web_key.kty = "oct" ; |
| 510 | web_key.key_ops = {"encrypt" , "decrypt" }; |
| 511 | web_key.alg = "A256CTR" ; |
| 512 | web_key.k = bin2base64_urlsafe_unpadded(bin: to_string(buf: key)); |
| 513 | web_key.ext = true; |
| 514 | |
| 515 | encryption_info.key = web_key; |
| 516 | encryption_info.iv = bin2base64_unpadded(bin: to_string(buf: iv)); |
| 517 | encryption_info.hashes["sha256" ] = bin2base64_unpadded(bin: sha256(data: to_string(buf: cyphertext))); |
| 518 | encryption_info.v = "v2" ; |
| 519 | |
| 520 | return std::make_pair(x&: cyphertext, y&: encryption_info); |
| 521 | } |
| 522 | |
| 523 | template<typename T> |
| 524 | void |
| 525 | remove_substrs(std::basic_string<T> &s, const std::basic_string<T> &p) |
| 526 | { |
| 527 | auto n = p.length(); |
| 528 | |
| 529 | for (auto i = s.find(p); i != std::basic_string<T>::npos; i = s.find(p)) |
| 530 | s.erase(i, n); |
| 531 | } |
| 532 | |
| 533 | std::string |
| 534 | unpack_key_file(const std::string &data) |
| 535 | { |
| 536 | std::string unpacked(data); |
| 537 | remove_substrs(s&: unpacked, p: HEADER_LINE); |
| 538 | |
| 539 | remove_substrs(s&: unpacked, p: TRAILER_LINE); |
| 540 | |
| 541 | remove_substrs(s&: unpacked, p: std::string("\n" )); |
| 542 | |
| 543 | return unpacked; |
| 544 | } |
| 545 | |
| 546 | BinaryBuf |
| 547 | HMAC_SHA256(const BinaryBuf &hmacKey, const BinaryBuf &data) |
| 548 | { |
| 549 | unsigned int len = SHA256_DIGEST_LENGTH; |
| 550 | unsigned char digest[SHA256_DIGEST_LENGTH]; |
| 551 | HMAC(evp_md: EVP_sha256(), key: hmacKey.data(), key_len: (int)hmacKey.size(), data: data.data(), data_len: data.size(), md: digest, md_len: &len); |
| 552 | BinaryBuf output(digest, digest + SHA256_DIGEST_LENGTH); |
| 553 | return output; |
| 554 | } |
| 555 | |
| 556 | void |
| 557 | uint8_to_uint32(uint8_t b[4], uint32_t &u32) |
| 558 | { |
| 559 | u32 = std::uint32_t{b[0]} << 24 | std::uint32_t{b[1]} << 16 | std::uint32_t{b[2]} << 8 | |
| 560 | std::uint32_t{b[3]}; |
| 561 | } |
| 562 | |
| 563 | void |
| 564 | uint32_to_uint8(uint8_t b[4], uint32_t u32) |
| 565 | { |
| 566 | b[3] = (uint8_t)u32; |
| 567 | b[2] = (uint8_t)(u32 >>= 8); |
| 568 | b[1] = (uint8_t)(u32 >>= 8); |
| 569 | b[0] = (uint8_t)(u32 >> 8); |
| 570 | } |
| 571 | } // namespace crypto |
| 572 | } // namespace mtx |
| 573 | |