| 1 | /* Copyright 2008, Google Inc. |
| 2 | * All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are |
| 6 | * met: |
| 7 | * |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above |
| 11 | * copyright notice, this list of conditions and the following disclaimer |
| 12 | * in the documentation and/or other materials provided with the |
| 13 | * distribution. |
| 14 | * * Neither the name of Google Inc. nor the names of its |
| 15 | * contributors may be used to endorse or promote products derived from |
| 16 | * this software without specific prior written permission. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | * |
| 30 | * curve25519-donna: Curve25519 elliptic curve, public key function |
| 31 | * |
| 32 | * http://code.google.com/p/curve25519-donna/ |
| 33 | * |
| 34 | * Adam Langley <agl@imperialviolet.org> |
| 35 | * |
| 36 | * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> |
| 37 | * |
| 38 | * More information about curve25519 can be found here |
| 39 | * http://cr.yp.to/ecdh.html |
| 40 | * |
| 41 | * djb's sample implementation of curve25519 is written in a special assembly |
| 42 | * language called qhasm and uses the floating point registers. |
| 43 | * |
| 44 | * This is, almost, a clean room reimplementation from the curve25519 paper. It |
| 45 | * uses many of the tricks described therein. Only the crecip function is taken |
| 46 | * from the sample implementation. */ |
| 47 | |
| 48 | #include <string.h> |
| 49 | #include <stdint.h> |
| 50 | |
| 51 | #ifdef _MSC_VER |
| 52 | #define inline __inline |
| 53 | #endif |
| 54 | |
| 55 | typedef uint8_t u8; |
| 56 | typedef int32_t s32; |
| 57 | typedef int64_t limb; |
| 58 | |
| 59 | /* Field element representation: |
| 60 | * |
| 61 | * Field elements are written as an array of signed, 64-bit limbs, least |
| 62 | * significant first. The value of the field element is: |
| 63 | * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... |
| 64 | * |
| 65 | * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */ |
| 66 | |
| 67 | /* Sum two numbers: output += in */ |
| 68 | static void fsum(limb *output, const limb *in) { |
| 69 | unsigned i; |
| 70 | for (i = 0; i < 10; i += 2) { |
| 71 | output[0+i] = output[0+i] + in[0+i]; |
| 72 | output[1+i] = output[1+i] + in[1+i]; |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | /* Find the difference of two numbers: output = in - output |
| 77 | * (note the order of the arguments!). */ |
| 78 | static void fdifference(limb *output, const limb *in) { |
| 79 | unsigned i; |
| 80 | for (i = 0; i < 10; ++i) { |
| 81 | output[i] = in[i] - output[i]; |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /* Multiply a number by a scalar: output = in * scalar */ |
| 86 | static void fscalar_product(limb *output, const limb *in, const limb scalar) { |
| 87 | unsigned i; |
| 88 | for (i = 0; i < 10; ++i) { |
| 89 | output[i] = in[i] * scalar; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | /* Multiply two numbers: output = in2 * in |
| 94 | * |
| 95 | * output must be distinct to both inputs. The inputs are reduced coefficient |
| 96 | * form, the output is not. |
| 97 | * |
| 98 | * output[x] <= 14 * the largest product of the input limbs. */ |
| 99 | static void fproduct(limb *output, const limb *in2, const limb *in) { |
| 100 | output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); |
| 101 | output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + |
| 102 | ((limb) ((s32) in2[1])) * ((s32) in[0]); |
| 103 | output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) + |
| 104 | ((limb) ((s32) in2[0])) * ((s32) in[2]) + |
| 105 | ((limb) ((s32) in2[2])) * ((s32) in[0]); |
| 106 | output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) + |
| 107 | ((limb) ((s32) in2[2])) * ((s32) in[1]) + |
| 108 | ((limb) ((s32) in2[0])) * ((s32) in[3]) + |
| 109 | ((limb) ((s32) in2[3])) * ((s32) in[0]); |
| 110 | output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) + |
| 111 | 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + |
| 112 | ((limb) ((s32) in2[3])) * ((s32) in[1])) + |
| 113 | ((limb) ((s32) in2[0])) * ((s32) in[4]) + |
| 114 | ((limb) ((s32) in2[4])) * ((s32) in[0]); |
| 115 | output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) + |
| 116 | ((limb) ((s32) in2[3])) * ((s32) in[2]) + |
| 117 | ((limb) ((s32) in2[1])) * ((s32) in[4]) + |
| 118 | ((limb) ((s32) in2[4])) * ((s32) in[1]) + |
| 119 | ((limb) ((s32) in2[0])) * ((s32) in[5]) + |
| 120 | ((limb) ((s32) in2[5])) * ((s32) in[0]); |
| 121 | output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + |
| 122 | ((limb) ((s32) in2[1])) * ((s32) in[5]) + |
| 123 | ((limb) ((s32) in2[5])) * ((s32) in[1])) + |
| 124 | ((limb) ((s32) in2[2])) * ((s32) in[4]) + |
| 125 | ((limb) ((s32) in2[4])) * ((s32) in[2]) + |
| 126 | ((limb) ((s32) in2[0])) * ((s32) in[6]) + |
| 127 | ((limb) ((s32) in2[6])) * ((s32) in[0]); |
| 128 | output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) + |
| 129 | ((limb) ((s32) in2[4])) * ((s32) in[3]) + |
| 130 | ((limb) ((s32) in2[2])) * ((s32) in[5]) + |
| 131 | ((limb) ((s32) in2[5])) * ((s32) in[2]) + |
| 132 | ((limb) ((s32) in2[1])) * ((s32) in[6]) + |
| 133 | ((limb) ((s32) in2[6])) * ((s32) in[1]) + |
| 134 | ((limb) ((s32) in2[0])) * ((s32) in[7]) + |
| 135 | ((limb) ((s32) in2[7])) * ((s32) in[0]); |
| 136 | output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) + |
| 137 | 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + |
| 138 | ((limb) ((s32) in2[5])) * ((s32) in[3]) + |
| 139 | ((limb) ((s32) in2[1])) * ((s32) in[7]) + |
| 140 | ((limb) ((s32) in2[7])) * ((s32) in[1])) + |
| 141 | ((limb) ((s32) in2[2])) * ((s32) in[6]) + |
| 142 | ((limb) ((s32) in2[6])) * ((s32) in[2]) + |
| 143 | ((limb) ((s32) in2[0])) * ((s32) in[8]) + |
| 144 | ((limb) ((s32) in2[8])) * ((s32) in[0]); |
| 145 | output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) + |
| 146 | ((limb) ((s32) in2[5])) * ((s32) in[4]) + |
| 147 | ((limb) ((s32) in2[3])) * ((s32) in[6]) + |
| 148 | ((limb) ((s32) in2[6])) * ((s32) in[3]) + |
| 149 | ((limb) ((s32) in2[2])) * ((s32) in[7]) + |
| 150 | ((limb) ((s32) in2[7])) * ((s32) in[2]) + |
| 151 | ((limb) ((s32) in2[1])) * ((s32) in[8]) + |
| 152 | ((limb) ((s32) in2[8])) * ((s32) in[1]) + |
| 153 | ((limb) ((s32) in2[0])) * ((s32) in[9]) + |
| 154 | ((limb) ((s32) in2[9])) * ((s32) in[0]); |
| 155 | output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + |
| 156 | ((limb) ((s32) in2[3])) * ((s32) in[7]) + |
| 157 | ((limb) ((s32) in2[7])) * ((s32) in[3]) + |
| 158 | ((limb) ((s32) in2[1])) * ((s32) in[9]) + |
| 159 | ((limb) ((s32) in2[9])) * ((s32) in[1])) + |
| 160 | ((limb) ((s32) in2[4])) * ((s32) in[6]) + |
| 161 | ((limb) ((s32) in2[6])) * ((s32) in[4]) + |
| 162 | ((limb) ((s32) in2[2])) * ((s32) in[8]) + |
| 163 | ((limb) ((s32) in2[8])) * ((s32) in[2]); |
| 164 | output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) + |
| 165 | ((limb) ((s32) in2[6])) * ((s32) in[5]) + |
| 166 | ((limb) ((s32) in2[4])) * ((s32) in[7]) + |
| 167 | ((limb) ((s32) in2[7])) * ((s32) in[4]) + |
| 168 | ((limb) ((s32) in2[3])) * ((s32) in[8]) + |
| 169 | ((limb) ((s32) in2[8])) * ((s32) in[3]) + |
| 170 | ((limb) ((s32) in2[2])) * ((s32) in[9]) + |
| 171 | ((limb) ((s32) in2[9])) * ((s32) in[2]); |
| 172 | output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) + |
| 173 | 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + |
| 174 | ((limb) ((s32) in2[7])) * ((s32) in[5]) + |
| 175 | ((limb) ((s32) in2[3])) * ((s32) in[9]) + |
| 176 | ((limb) ((s32) in2[9])) * ((s32) in[3])) + |
| 177 | ((limb) ((s32) in2[4])) * ((s32) in[8]) + |
| 178 | ((limb) ((s32) in2[8])) * ((s32) in[4]); |
| 179 | output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) + |
| 180 | ((limb) ((s32) in2[7])) * ((s32) in[6]) + |
| 181 | ((limb) ((s32) in2[5])) * ((s32) in[8]) + |
| 182 | ((limb) ((s32) in2[8])) * ((s32) in[5]) + |
| 183 | ((limb) ((s32) in2[4])) * ((s32) in[9]) + |
| 184 | ((limb) ((s32) in2[9])) * ((s32) in[4]); |
| 185 | output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + |
| 186 | ((limb) ((s32) in2[5])) * ((s32) in[9]) + |
| 187 | ((limb) ((s32) in2[9])) * ((s32) in[5])) + |
| 188 | ((limb) ((s32) in2[6])) * ((s32) in[8]) + |
| 189 | ((limb) ((s32) in2[8])) * ((s32) in[6]); |
| 190 | output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) + |
| 191 | ((limb) ((s32) in2[8])) * ((s32) in[7]) + |
| 192 | ((limb) ((s32) in2[6])) * ((s32) in[9]) + |
| 193 | ((limb) ((s32) in2[9])) * ((s32) in[6]); |
| 194 | output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) + |
| 195 | 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + |
| 196 | ((limb) ((s32) in2[9])) * ((s32) in[7])); |
| 197 | output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) + |
| 198 | ((limb) ((s32) in2[9])) * ((s32) in[8]); |
| 199 | output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); |
| 200 | } |
| 201 | |
| 202 | /* Reduce a long form to a short form by taking the input mod 2^255 - 19. |
| 203 | * |
| 204 | * On entry: |output[i]| < 14*2^54 |
| 205 | * On exit: |output[0..8]| < 280*2^54 */ |
| 206 | static void freduce_degree(limb *output) { |
| 207 | /* Each of these shifts and adds ends up multiplying the value by 19. |
| 208 | * |
| 209 | * For output[0..8], the absolute entry value is < 14*2^54 and we add, at |
| 210 | * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */ |
| 211 | output[8] += output[18] << 4; |
| 212 | output[8] += output[18] << 1; |
| 213 | output[8] += output[18]; |
| 214 | output[7] += output[17] << 4; |
| 215 | output[7] += output[17] << 1; |
| 216 | output[7] += output[17]; |
| 217 | output[6] += output[16] << 4; |
| 218 | output[6] += output[16] << 1; |
| 219 | output[6] += output[16]; |
| 220 | output[5] += output[15] << 4; |
| 221 | output[5] += output[15] << 1; |
| 222 | output[5] += output[15]; |
| 223 | output[4] += output[14] << 4; |
| 224 | output[4] += output[14] << 1; |
| 225 | output[4] += output[14]; |
| 226 | output[3] += output[13] << 4; |
| 227 | output[3] += output[13] << 1; |
| 228 | output[3] += output[13]; |
| 229 | output[2] += output[12] << 4; |
| 230 | output[2] += output[12] << 1; |
| 231 | output[2] += output[12]; |
| 232 | output[1] += output[11] << 4; |
| 233 | output[1] += output[11] << 1; |
| 234 | output[1] += output[11]; |
| 235 | output[0] += output[10] << 4; |
| 236 | output[0] += output[10] << 1; |
| 237 | output[0] += output[10]; |
| 238 | } |
| 239 | |
| 240 | #if (-1 & 3) != 3 |
| 241 | #error "This code only works on a two's complement system" |
| 242 | #endif |
| 243 | |
| 244 | /* return v / 2^26, using only shifts and adds. |
| 245 | * |
| 246 | * On entry: v can take any value. */ |
| 247 | static inline limb |
| 248 | div_by_2_26(const limb v) |
| 249 | { |
| 250 | /* High word of v; no shift needed. */ |
| 251 | const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); |
| 252 | /* Set to all 1s if v was negative; else set to 0s. */ |
| 253 | const int32_t sign = ((int32_t) highword) >> 31; |
| 254 | /* Set to 0x3ffffff if v was negative; else set to 0. */ |
| 255 | const int32_t roundoff = ((uint32_t) sign) >> 6; |
| 256 | /* Should return v / (1<<26) */ |
| 257 | return (v + roundoff) >> 26; |
| 258 | } |
| 259 | |
| 260 | /* return v / (2^25), using only shifts and adds. |
| 261 | * |
| 262 | * On entry: v can take any value. */ |
| 263 | static inline limb |
| 264 | div_by_2_25(const limb v) |
| 265 | { |
| 266 | /* High word of v; no shift needed*/ |
| 267 | const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); |
| 268 | /* Set to all 1s if v was negative; else set to 0s. */ |
| 269 | const int32_t sign = ((int32_t) highword) >> 31; |
| 270 | /* Set to 0x1ffffff if v was negative; else set to 0. */ |
| 271 | const int32_t roundoff = ((uint32_t) sign) >> 7; |
| 272 | /* Should return v / (1<<25) */ |
| 273 | return (v + roundoff) >> 25; |
| 274 | } |
| 275 | |
| 276 | /* Reduce all coefficients of the short form input so that |x| < 2^26. |
| 277 | * |
| 278 | * On entry: |output[i]| < 280*2^54 */ |
| 279 | static void freduce_coefficients(limb *output) { |
| 280 | unsigned i; |
| 281 | |
| 282 | output[10] = 0; |
| 283 | |
| 284 | for (i = 0; i < 10; i += 2) { |
| 285 | limb over = div_by_2_26(v: output[i]); |
| 286 | /* The entry condition (that |output[i]| < 280*2^54) means that over is, at |
| 287 | * most, 280*2^28 in the first iteration of this loop. This is added to the |
| 288 | * next limb and we can approximate the resulting bound of that limb by |
| 289 | * 281*2^54. */ |
| 290 | output[i] -= over << 26; |
| 291 | output[i+1] += over; |
| 292 | |
| 293 | /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| < |
| 294 | * 281*2^29. When this is added to the next limb, the resulting bound can |
| 295 | * be approximated as 281*2^54. |
| 296 | * |
| 297 | * For subsequent iterations of the loop, 281*2^54 remains a conservative |
| 298 | * bound and no overflow occurs. */ |
| 299 | over = div_by_2_25(v: output[i+1]); |
| 300 | output[i+1] -= over << 25; |
| 301 | output[i+2] += over; |
| 302 | } |
| 303 | /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */ |
| 304 | output[0] += output[10] << 4; |
| 305 | output[0] += output[10] << 1; |
| 306 | output[0] += output[10]; |
| 307 | |
| 308 | output[10] = 0; |
| 309 | |
| 310 | /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 |
| 311 | * So |over| will be no more than 2^16. */ |
| 312 | { |
| 313 | limb over = div_by_2_26(v: output[0]); |
| 314 | output[0] -= over << 26; |
| 315 | output[1] += over; |
| 316 | } |
| 317 | |
| 318 | /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The |
| 319 | * bound on |output[1]| is sufficient to meet our needs. */ |
| 320 | } |
| 321 | |
| 322 | /* A helpful wrapper around fproduct: output = in * in2. |
| 323 | * |
| 324 | * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. |
| 325 | * |
| 326 | * output must be distinct to both inputs. The output is reduced degree |
| 327 | * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */ |
| 328 | static void |
| 329 | fmul(limb *output, const limb *in, const limb *in2) { |
| 330 | limb t[19]; |
| 331 | fproduct(output: t, in2: in, in: in2); |
| 332 | /* |t[i]| < 14*2^54 */ |
| 333 | freduce_degree(output: t); |
| 334 | freduce_coefficients(output: t); |
| 335 | /* |t[i]| < 2^26 */ |
| 336 | memcpy(dest: output, src: t, n: sizeof(limb) * 10); |
| 337 | } |
| 338 | |
| 339 | /* Square a number: output = in**2 |
| 340 | * |
| 341 | * output must be distinct from the input. The inputs are reduced coefficient |
| 342 | * form, the output is not. |
| 343 | * |
| 344 | * output[x] <= 14 * the largest product of the input limbs. */ |
| 345 | static void fsquare_inner(limb *output, const limb *in) { |
| 346 | output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); |
| 347 | output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); |
| 348 | output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + |
| 349 | ((limb) ((s32) in[0])) * ((s32) in[2])); |
| 350 | output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + |
| 351 | ((limb) ((s32) in[0])) * ((s32) in[3])); |
| 352 | output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) + |
| 353 | 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) + |
| 354 | 2 * ((limb) ((s32) in[0])) * ((s32) in[4]); |
| 355 | output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + |
| 356 | ((limb) ((s32) in[1])) * ((s32) in[4]) + |
| 357 | ((limb) ((s32) in[0])) * ((s32) in[5])); |
| 358 | output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + |
| 359 | ((limb) ((s32) in[2])) * ((s32) in[4]) + |
| 360 | ((limb) ((s32) in[0])) * ((s32) in[6]) + |
| 361 | 2 * ((limb) ((s32) in[1])) * ((s32) in[5])); |
| 362 | output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + |
| 363 | ((limb) ((s32) in[2])) * ((s32) in[5]) + |
| 364 | ((limb) ((s32) in[1])) * ((s32) in[6]) + |
| 365 | ((limb) ((s32) in[0])) * ((s32) in[7])); |
| 366 | output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) + |
| 367 | 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + |
| 368 | ((limb) ((s32) in[0])) * ((s32) in[8]) + |
| 369 | 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + |
| 370 | ((limb) ((s32) in[3])) * ((s32) in[5]))); |
| 371 | output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + |
| 372 | ((limb) ((s32) in[3])) * ((s32) in[6]) + |
| 373 | ((limb) ((s32) in[2])) * ((s32) in[7]) + |
| 374 | ((limb) ((s32) in[1])) * ((s32) in[8]) + |
| 375 | ((limb) ((s32) in[0])) * ((s32) in[9])); |
| 376 | output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + |
| 377 | ((limb) ((s32) in[4])) * ((s32) in[6]) + |
| 378 | ((limb) ((s32) in[2])) * ((s32) in[8]) + |
| 379 | 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + |
| 380 | ((limb) ((s32) in[1])) * ((s32) in[9]))); |
| 381 | output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + |
| 382 | ((limb) ((s32) in[4])) * ((s32) in[7]) + |
| 383 | ((limb) ((s32) in[3])) * ((s32) in[8]) + |
| 384 | ((limb) ((s32) in[2])) * ((s32) in[9])); |
| 385 | output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) + |
| 386 | 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + |
| 387 | 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + |
| 388 | ((limb) ((s32) in[3])) * ((s32) in[9]))); |
| 389 | output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + |
| 390 | ((limb) ((s32) in[5])) * ((s32) in[8]) + |
| 391 | ((limb) ((s32) in[4])) * ((s32) in[9])); |
| 392 | output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + |
| 393 | ((limb) ((s32) in[6])) * ((s32) in[8]) + |
| 394 | 2 * ((limb) ((s32) in[5])) * ((s32) in[9])); |
| 395 | output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + |
| 396 | ((limb) ((s32) in[6])) * ((s32) in[9])); |
| 397 | output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) + |
| 398 | 4 * ((limb) ((s32) in[7])) * ((s32) in[9]); |
| 399 | output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]); |
| 400 | output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); |
| 401 | } |
| 402 | |
| 403 | /* fsquare sets output = in^2. |
| 404 | * |
| 405 | * On entry: The |in| argument is in reduced coefficients form and |in[i]| < |
| 406 | * 2^27. |
| 407 | * |
| 408 | * On exit: The |output| argument is in reduced coefficients form (indeed, one |
| 409 | * need only provide storage for 10 limbs) and |out[i]| < 2^26. */ |
| 410 | static void |
| 411 | fsquare(limb *output, const limb *in) { |
| 412 | limb t[19]; |
| 413 | fsquare_inner(output: t, in); |
| 414 | /* |t[i]| < 14*2^54 because the largest product of two limbs will be < |
| 415 | * 2^(27+27) and fsquare_inner adds together, at most, 14 of those |
| 416 | * products. */ |
| 417 | freduce_degree(output: t); |
| 418 | freduce_coefficients(output: t); |
| 419 | /* |t[i]| < 2^26 */ |
| 420 | memcpy(dest: output, src: t, n: sizeof(limb) * 10); |
| 421 | } |
| 422 | |
| 423 | /* Take a little-endian, 32-byte number and expand it into polynomial form */ |
| 424 | static void |
| 425 | fexpand(limb *output, const u8 *input) { |
| 426 | #define F(n,start,shift,mask) \ |
| 427 | output[n] = ((((limb) input[start + 0]) | \ |
| 428 | ((limb) input[start + 1]) << 8 | \ |
| 429 | ((limb) input[start + 2]) << 16 | \ |
| 430 | ((limb) input[start + 3]) << 24) >> shift) & mask; |
| 431 | F(0, 0, 0, 0x3ffffff); |
| 432 | F(1, 3, 2, 0x1ffffff); |
| 433 | F(2, 6, 3, 0x3ffffff); |
| 434 | F(3, 9, 5, 0x1ffffff); |
| 435 | F(4, 12, 6, 0x3ffffff); |
| 436 | F(5, 16, 0, 0x1ffffff); |
| 437 | F(6, 19, 1, 0x3ffffff); |
| 438 | F(7, 22, 3, 0x1ffffff); |
| 439 | F(8, 25, 4, 0x3ffffff); |
| 440 | F(9, 28, 6, 0x1ffffff); |
| 441 | #undef F |
| 442 | } |
| 443 | |
| 444 | #if (-32 >> 1) != -16 |
| 445 | #error "This code only works when >> does sign-extension on negative numbers" |
| 446 | #endif |
| 447 | |
| 448 | /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */ |
| 449 | static s32 s32_eq(s32 a, s32 b) { |
| 450 | a = ~(a ^ b); |
| 451 | a &= a << 16; |
| 452 | a &= a << 8; |
| 453 | a &= a << 4; |
| 454 | a &= a << 2; |
| 455 | a &= a << 1; |
| 456 | return a >> 31; |
| 457 | } |
| 458 | |
| 459 | /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are |
| 460 | * both non-negative. */ |
| 461 | static s32 s32_gte(s32 a, s32 b) { |
| 462 | a -= b; |
| 463 | /* a >= 0 iff a >= b. */ |
| 464 | return ~(a >> 31); |
| 465 | } |
| 466 | |
| 467 | /* Take a fully reduced polynomial form number and contract it into a |
| 468 | * little-endian, 32-byte array. |
| 469 | * |
| 470 | * On entry: |input_limbs[i]| < 2^26 */ |
| 471 | static void |
| 472 | fcontract(u8 *output, limb *input_limbs) { |
| 473 | int i; |
| 474 | int j; |
| 475 | s32 input[10]; |
| 476 | s32 mask; |
| 477 | |
| 478 | /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */ |
| 479 | for (i = 0; i < 10; i++) { |
| 480 | input[i] = input_limbs[i]; |
| 481 | } |
| 482 | |
| 483 | for (j = 0; j < 2; ++j) { |
| 484 | for (i = 0; i < 9; ++i) { |
| 485 | if ((i & 1) == 1) { |
| 486 | /* This calculation is a time-invariant way to make input[i] |
| 487 | * non-negative by borrowing from the next-larger limb. */ |
| 488 | const s32 mask = input[i] >> 31; |
| 489 | const s32 carry = -((input[i] & mask) >> 25); |
| 490 | input[i] = input[i] + (carry << 25); |
| 491 | input[i+1] = input[i+1] - carry; |
| 492 | } else { |
| 493 | const s32 mask = input[i] >> 31; |
| 494 | const s32 carry = -((input[i] & mask) >> 26); |
| 495 | input[i] = input[i] + (carry << 26); |
| 496 | input[i+1] = input[i+1] - carry; |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | /* There's no greater limb for input[9] to borrow from, but we can multiply |
| 501 | * by 19 and borrow from input[0], which is valid mod 2^255-19. */ |
| 502 | { |
| 503 | const s32 mask = input[9] >> 31; |
| 504 | const s32 carry = -((input[9] & mask) >> 25); |
| 505 | input[9] = input[9] + (carry << 25); |
| 506 | input[0] = input[0] - (carry * 19); |
| 507 | } |
| 508 | |
| 509 | /* After the first iteration, input[1..9] are non-negative and fit within |
| 510 | * 25 or 26 bits, depending on position. However, input[0] may be |
| 511 | * negative. */ |
| 512 | } |
| 513 | |
| 514 | /* The first borrow-propagation pass above ended with every limb |
| 515 | except (possibly) input[0] non-negative. |
| 516 | |
| 517 | If input[0] was negative after the first pass, then it was because of a |
| 518 | carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most, |
| 519 | one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19. |
| 520 | |
| 521 | In the second pass, each limb is decreased by at most one. Thus the second |
| 522 | borrow-propagation pass could only have wrapped around to decrease |
| 523 | input[0] again if the first pass left input[0] negative *and* input[1] |
| 524 | through input[9] were all zero. In that case, input[1] is now 2^25 - 1, |
| 525 | and this last borrow-propagation step will leave input[1] non-negative. */ |
| 526 | { |
| 527 | const s32 mask = input[0] >> 31; |
| 528 | const s32 carry = -((input[0] & mask) >> 26); |
| 529 | input[0] = input[0] + (carry << 26); |
| 530 | input[1] = input[1] - carry; |
| 531 | } |
| 532 | |
| 533 | /* All input[i] are now non-negative. However, there might be values between |
| 534 | * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */ |
| 535 | for (j = 0; j < 2; j++) { |
| 536 | for (i = 0; i < 9; i++) { |
| 537 | if ((i & 1) == 1) { |
| 538 | const s32 carry = input[i] >> 25; |
| 539 | input[i] &= 0x1ffffff; |
| 540 | input[i+1] += carry; |
| 541 | } else { |
| 542 | const s32 carry = input[i] >> 26; |
| 543 | input[i] &= 0x3ffffff; |
| 544 | input[i+1] += carry; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | { |
| 549 | const s32 carry = input[9] >> 25; |
| 550 | input[9] &= 0x1ffffff; |
| 551 | input[0] += 19*carry; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* If the first carry-chain pass, just above, ended up with a carry from |
| 556 | * input[9], and that caused input[0] to be out-of-bounds, then input[0] was |
| 557 | * < 2^26 + 2*19, because the carry was, at most, two. |
| 558 | * |
| 559 | * If the second pass carried from input[9] again then input[0] is < 2*19 and |
| 560 | * the input[9] -> input[0] carry didn't push input[0] out of bounds. */ |
| 561 | |
| 562 | /* It still remains the case that input might be between 2^255-19 and 2^255. |
| 563 | * In this case, input[1..9] must take their maximum value and input[0] must |
| 564 | * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */ |
| 565 | mask = s32_gte(a: input[0], b: 0x3ffffed); |
| 566 | for (i = 1; i < 10; i++) { |
| 567 | if ((i & 1) == 1) { |
| 568 | mask &= s32_eq(a: input[i], b: 0x1ffffff); |
| 569 | } else { |
| 570 | mask &= s32_eq(a: input[i], b: 0x3ffffff); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus |
| 575 | * this conditionally subtracts 2^255-19. */ |
| 576 | input[0] -= mask & 0x3ffffed; |
| 577 | |
| 578 | for (i = 1; i < 10; i++) { |
| 579 | if ((i & 1) == 1) { |
| 580 | input[i] -= mask & 0x1ffffff; |
| 581 | } else { |
| 582 | input[i] -= mask & 0x3ffffff; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | input[1] <<= 2; |
| 587 | input[2] <<= 3; |
| 588 | input[3] <<= 5; |
| 589 | input[4] <<= 6; |
| 590 | input[6] <<= 1; |
| 591 | input[7] <<= 3; |
| 592 | input[8] <<= 4; |
| 593 | input[9] <<= 6; |
| 594 | #define F(i, s) \ |
| 595 | output[s+0] |= input[i] & 0xff; \ |
| 596 | output[s+1] = (input[i] >> 8) & 0xff; \ |
| 597 | output[s+2] = (input[i] >> 16) & 0xff; \ |
| 598 | output[s+3] = (input[i] >> 24) & 0xff; |
| 599 | output[0] = 0; |
| 600 | output[16] = 0; |
| 601 | F(0,0); |
| 602 | F(1,3); |
| 603 | F(2,6); |
| 604 | F(3,9); |
| 605 | F(4,12); |
| 606 | F(5,16); |
| 607 | F(6,19); |
| 608 | F(7,22); |
| 609 | F(8,25); |
| 610 | F(9,28); |
| 611 | #undef F |
| 612 | } |
| 613 | |
| 614 | /* Input: Q, Q', Q-Q' |
| 615 | * Output: 2Q, Q+Q' |
| 616 | * |
| 617 | * x2 z3: long form |
| 618 | * x3 z3: long form |
| 619 | * x z: short form, destroyed |
| 620 | * xprime zprime: short form, destroyed |
| 621 | * qmqp: short form, preserved |
| 622 | * |
| 623 | * On entry and exit, the absolute value of the limbs of all inputs and outputs |
| 624 | * are < 2^26. */ |
| 625 | static void fmonty(limb *x2, limb *z2, /* output 2Q */ |
| 626 | limb *x3, limb *z3, /* output Q + Q' */ |
| 627 | limb *x, limb *z, /* input Q */ |
| 628 | limb *xprime, limb *zprime, /* input Q' */ |
| 629 | const limb *qmqp /* input Q - Q' */) { |
| 630 | limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], |
| 631 | zzprime[19], zzzprime[19], xxxprime[19]; |
| 632 | |
| 633 | memcpy(dest: origx, src: x, n: 10 * sizeof(limb)); |
| 634 | fsum(output: x, in: z); |
| 635 | /* |x[i]| < 2^27 */ |
| 636 | fdifference(output: z, in: origx); /* does x - z */ |
| 637 | /* |z[i]| < 2^27 */ |
| 638 | |
| 639 | memcpy(dest: origxprime, src: xprime, n: sizeof(limb) * 10); |
| 640 | fsum(output: xprime, in: zprime); |
| 641 | /* |xprime[i]| < 2^27 */ |
| 642 | fdifference(output: zprime, in: origxprime); |
| 643 | /* |zprime[i]| < 2^27 */ |
| 644 | fproduct(output: xxprime, in2: xprime, in: z); |
| 645 | /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be < |
| 646 | * 2^(27+27) and fproduct adds together, at most, 14 of those products. |
| 647 | * (Approximating that to 2^58 doesn't work out.) */ |
| 648 | fproduct(output: zzprime, in2: x, in: zprime); |
| 649 | /* |zzprime[i]| < 14*2^54 */ |
| 650 | freduce_degree(output: xxprime); |
| 651 | freduce_coefficients(output: xxprime); |
| 652 | /* |xxprime[i]| < 2^26 */ |
| 653 | freduce_degree(output: zzprime); |
| 654 | freduce_coefficients(output: zzprime); |
| 655 | /* |zzprime[i]| < 2^26 */ |
| 656 | memcpy(dest: origxprime, src: xxprime, n: sizeof(limb) * 10); |
| 657 | fsum(output: xxprime, in: zzprime); |
| 658 | /* |xxprime[i]| < 2^27 */ |
| 659 | fdifference(output: zzprime, in: origxprime); |
| 660 | /* |zzprime[i]| < 2^27 */ |
| 661 | fsquare(output: xxxprime, in: xxprime); |
| 662 | /* |xxxprime[i]| < 2^26 */ |
| 663 | fsquare(output: zzzprime, in: zzprime); |
| 664 | /* |zzzprime[i]| < 2^26 */ |
| 665 | fproduct(output: zzprime, in2: zzzprime, in: qmqp); |
| 666 | /* |zzprime[i]| < 14*2^52 */ |
| 667 | freduce_degree(output: zzprime); |
| 668 | freduce_coefficients(output: zzprime); |
| 669 | /* |zzprime[i]| < 2^26 */ |
| 670 | memcpy(dest: x3, src: xxxprime, n: sizeof(limb) * 10); |
| 671 | memcpy(dest: z3, src: zzprime, n: sizeof(limb) * 10); |
| 672 | |
| 673 | fsquare(output: xx, in: x); |
| 674 | /* |xx[i]| < 2^26 */ |
| 675 | fsquare(output: zz, in: z); |
| 676 | /* |zz[i]| < 2^26 */ |
| 677 | fproduct(output: x2, in2: xx, in: zz); |
| 678 | /* |x2[i]| < 14*2^52 */ |
| 679 | freduce_degree(output: x2); |
| 680 | freduce_coefficients(output: x2); |
| 681 | /* |x2[i]| < 2^26 */ |
| 682 | fdifference(output: zz, in: xx); // does zz = xx - zz |
| 683 | /* |zz[i]| < 2^27 */ |
| 684 | memset(s: zzz + 10, c: 0, n: sizeof(limb) * 9); |
| 685 | fscalar_product(output: zzz, in: zz, scalar: 121665); |
| 686 | /* |zzz[i]| < 2^(27+17) */ |
| 687 | /* No need to call freduce_degree here: |
| 688 | fscalar_product doesn't increase the degree of its input. */ |
| 689 | freduce_coefficients(output: zzz); |
| 690 | /* |zzz[i]| < 2^26 */ |
| 691 | fsum(output: zzz, in: xx); |
| 692 | /* |zzz[i]| < 2^27 */ |
| 693 | fproduct(output: z2, in2: zz, in: zzz); |
| 694 | /* |z2[i]| < 14*2^(26+27) */ |
| 695 | freduce_degree(output: z2); |
| 696 | freduce_coefficients(output: z2); |
| 697 | /* |z2|i| < 2^26 */ |
| 698 | } |
| 699 | |
| 700 | /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave |
| 701 | * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid |
| 702 | * side-channel attacks. |
| 703 | * |
| 704 | * NOTE that this function requires that 'iswap' be 1 or 0; other values give |
| 705 | * wrong results. Also, the two limb arrays must be in reduced-coefficient, |
| 706 | * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, |
| 707 | * and all all values in a[0..9],b[0..9] must have magnitude less than |
| 708 | * INT32_MAX. */ |
| 709 | static void |
| 710 | swap_conditional(limb a[19], limb b[19], limb iswap) { |
| 711 | unsigned i; |
| 712 | const s32 swap = (s32) -iswap; |
| 713 | |
| 714 | for (i = 0; i < 10; ++i) { |
| 715 | const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) ); |
| 716 | a[i] = ((s32)a[i]) ^ x; |
| 717 | b[i] = ((s32)b[i]) ^ x; |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | /* Calculates nQ where Q is the x-coordinate of a point on the curve |
| 722 | * |
| 723 | * resultx/resultz: the x coordinate of the resulting curve point (short form) |
| 724 | * n: a little endian, 32-byte number |
| 725 | * q: a point of the curve (short form) */ |
| 726 | static void |
| 727 | cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { |
| 728 | limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; |
| 729 | limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; |
| 730 | limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; |
| 731 | limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; |
| 732 | |
| 733 | unsigned i, j; |
| 734 | |
| 735 | memcpy(dest: nqpqx, src: q, n: sizeof(limb) * 10); |
| 736 | |
| 737 | for (i = 0; i < 32; ++i) { |
| 738 | u8 byte = n[31 - i]; |
| 739 | for (j = 0; j < 8; ++j) { |
| 740 | const limb bit = byte >> 7; |
| 741 | |
| 742 | swap_conditional(a: nqx, b: nqpqx, iswap: bit); |
| 743 | swap_conditional(a: nqz, b: nqpqz, iswap: bit); |
| 744 | fmonty(x2: nqx2, z2: nqz2, |
| 745 | x3: nqpqx2, z3: nqpqz2, |
| 746 | x: nqx, z: nqz, |
| 747 | xprime: nqpqx, zprime: nqpqz, |
| 748 | qmqp: q); |
| 749 | swap_conditional(a: nqx2, b: nqpqx2, iswap: bit); |
| 750 | swap_conditional(a: nqz2, b: nqpqz2, iswap: bit); |
| 751 | |
| 752 | t = nqx; |
| 753 | nqx = nqx2; |
| 754 | nqx2 = t; |
| 755 | t = nqz; |
| 756 | nqz = nqz2; |
| 757 | nqz2 = t; |
| 758 | t = nqpqx; |
| 759 | nqpqx = nqpqx2; |
| 760 | nqpqx2 = t; |
| 761 | t = nqpqz; |
| 762 | nqpqz = nqpqz2; |
| 763 | nqpqz2 = t; |
| 764 | |
| 765 | byte <<= 1; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | memcpy(dest: resultx, src: nqx, n: sizeof(limb) * 10); |
| 770 | memcpy(dest: resultz, src: nqz, n: sizeof(limb) * 10); |
| 771 | } |
| 772 | |
| 773 | // ----------------------------------------------------------------------------- |
| 774 | // Shamelessly copied from djb's code |
| 775 | // ----------------------------------------------------------------------------- |
| 776 | static void |
| 777 | crecip(limb *out, const limb *z) { |
| 778 | limb z2[10]; |
| 779 | limb z9[10]; |
| 780 | limb z11[10]; |
| 781 | limb z2_5_0[10]; |
| 782 | limb z2_10_0[10]; |
| 783 | limb z2_20_0[10]; |
| 784 | limb z2_50_0[10]; |
| 785 | limb z2_100_0[10]; |
| 786 | limb t0[10]; |
| 787 | limb t1[10]; |
| 788 | int i; |
| 789 | |
| 790 | /* 2 */ fsquare(output: z2,in: z); |
| 791 | /* 4 */ fsquare(output: t1,in: z2); |
| 792 | /* 8 */ fsquare(output: t0,in: t1); |
| 793 | /* 9 */ fmul(output: z9,in: t0,in2: z); |
| 794 | /* 11 */ fmul(output: z11,in: z9,in2: z2); |
| 795 | /* 22 */ fsquare(output: t0,in: z11); |
| 796 | /* 2^5 - 2^0 = 31 */ fmul(output: z2_5_0,in: t0,in2: z9); |
| 797 | |
| 798 | /* 2^6 - 2^1 */ fsquare(output: t0,in: z2_5_0); |
| 799 | /* 2^7 - 2^2 */ fsquare(output: t1,in: t0); |
| 800 | /* 2^8 - 2^3 */ fsquare(output: t0,in: t1); |
| 801 | /* 2^9 - 2^4 */ fsquare(output: t1,in: t0); |
| 802 | /* 2^10 - 2^5 */ fsquare(output: t0,in: t1); |
| 803 | /* 2^10 - 2^0 */ fmul(output: z2_10_0,in: t0,in2: z2_5_0); |
| 804 | |
| 805 | /* 2^11 - 2^1 */ fsquare(output: t0,in: z2_10_0); |
| 806 | /* 2^12 - 2^2 */ fsquare(output: t1,in: t0); |
| 807 | /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(output: t0,in: t1); fsquare(output: t1,in: t0); } |
| 808 | /* 2^20 - 2^0 */ fmul(output: z2_20_0,in: t1,in2: z2_10_0); |
| 809 | |
| 810 | /* 2^21 - 2^1 */ fsquare(output: t0,in: z2_20_0); |
| 811 | /* 2^22 - 2^2 */ fsquare(output: t1,in: t0); |
| 812 | /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(output: t0,in: t1); fsquare(output: t1,in: t0); } |
| 813 | /* 2^40 - 2^0 */ fmul(output: t0,in: t1,in2: z2_20_0); |
| 814 | |
| 815 | /* 2^41 - 2^1 */ fsquare(output: t1,in: t0); |
| 816 | /* 2^42 - 2^2 */ fsquare(output: t0,in: t1); |
| 817 | /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(output: t1,in: t0); fsquare(output: t0,in: t1); } |
| 818 | /* 2^50 - 2^0 */ fmul(output: z2_50_0,in: t0,in2: z2_10_0); |
| 819 | |
| 820 | /* 2^51 - 2^1 */ fsquare(output: t0,in: z2_50_0); |
| 821 | /* 2^52 - 2^2 */ fsquare(output: t1,in: t0); |
| 822 | /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(output: t0,in: t1); fsquare(output: t1,in: t0); } |
| 823 | /* 2^100 - 2^0 */ fmul(output: z2_100_0,in: t1,in2: z2_50_0); |
| 824 | |
| 825 | /* 2^101 - 2^1 */ fsquare(output: t1,in: z2_100_0); |
| 826 | /* 2^102 - 2^2 */ fsquare(output: t0,in: t1); |
| 827 | /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(output: t1,in: t0); fsquare(output: t0,in: t1); } |
| 828 | /* 2^200 - 2^0 */ fmul(output: t1,in: t0,in2: z2_100_0); |
| 829 | |
| 830 | /* 2^201 - 2^1 */ fsquare(output: t0,in: t1); |
| 831 | /* 2^202 - 2^2 */ fsquare(output: t1,in: t0); |
| 832 | /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(output: t0,in: t1); fsquare(output: t1,in: t0); } |
| 833 | /* 2^250 - 2^0 */ fmul(output: t0,in: t1,in2: z2_50_0); |
| 834 | |
| 835 | /* 2^251 - 2^1 */ fsquare(output: t1,in: t0); |
| 836 | /* 2^252 - 2^2 */ fsquare(output: t0,in: t1); |
| 837 | /* 2^253 - 2^3 */ fsquare(output: t1,in: t0); |
| 838 | /* 2^254 - 2^4 */ fsquare(output: t0,in: t1); |
| 839 | /* 2^255 - 2^5 */ fsquare(output: t1,in: t0); |
| 840 | /* 2^255 - 21 */ fmul(output: out,in: t1,in2: z11); |
| 841 | } |
| 842 | |
| 843 | int |
| 844 | curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { |
| 845 | limb bp[10], x[10], z[11], zmone[10]; |
| 846 | uint8_t e[32]; |
| 847 | int i; |
| 848 | |
| 849 | for (i = 0; i < 32; ++i) e[i] = secret[i]; |
| 850 | e[0] &= 248; |
| 851 | e[31] &= 127; |
| 852 | e[31] |= 64; |
| 853 | |
| 854 | fexpand(output: bp, input: basepoint); |
| 855 | cmult(resultx: x, resultz: z, n: e, q: bp); |
| 856 | crecip(out: zmone, z); |
| 857 | fmul(output: z, in: x, in2: zmone); |
| 858 | fcontract(output: mypublic, input_limbs: z); |
| 859 | return 0; |
| 860 | } |
| 861 | |